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ABSTRACT

This report presents two further applications of very elementary formulae
of approximate differentiation. The first is a new derivation in a somewhat
sharper form of the following theorem of V. M. Olovyani~nikov:

Let N (n > 2) be the class of functions g(x) such that g(x),
n

g'(x),..o,g(n)(x) are > 0, bounded, and non-decreasing on the half-line

-m < x <_ 0. A special element of Nn is
nn

g,(x) = 0 if -- < x < -1, g,(x) = (1+x) if -1 < x < 0 .

If g(x) E N is such that

g(0) < g*(0) = 1, g() (0) < g,(n) (0) = n1
then

19(V (0 < (V)
(1) g 0) ,< g. (0) for v = 1,...,n-I

Moreover, if we have equality in (1) for some value of v, then we have there
equality for all v, and this happens only if g(x) = g.(x) in (--,0].

The second application gives sufficient conditions for the
differentiability of asymptotic expansion (Theorem 4).
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SIGNIFICANCE AND EXPLANATION

This report presents two further applications of very elementary formulae

of approximate differentiation. The first is a new derivation in a somewhat

sharper form of a theorem of V. M. Olovyanisnikov on multiply monotone

functions. The second applications gives sufficient conditions for the

differentiability of asymptotic expansions.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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TWO APPLICATIONS OF APPROXIMATE DIFFERENTIATION FORMULAE:

AN EXTREMUM PROBLEM FOR MULTIPLY MONOTONE FUNCTIONS

AND THE DIFFERENTIATION OF ASYMPTOTIC EXPANSIONS

I. J. Schoenberg

1. Introduction. Approximate differentiation formulae are admirably

suited for the solution of certain extremum problems of the Landau-Kolmogorov

type (see [5] and [1]). Here we deal with two unrelated further applications.

In Part I we establish Theorem I below due to V. M. Olovyanisnikov [4)

(see R. P. Boas' review in Math. Reviews 13, p. 17. I owe to Boas the

reference to this paper). We restate Theorem 1 as Theorem 2 in terms of

multiply monotone functions on the positive real axis, at the same time

showing the unicity of the extremizing functions (§3). In §4 we use a result

from R. E. Williamson's paper [7] to derive a second proof of Olovyanisnikov's

theorem.

Part II deals with our second topic. We derive sufficient conditions for

the differentiation of asymptotic expansions.

I. Multiply monotone functions.

2. Olovyanisnikov's theorem. Let N (n > 2) denote the class of
n =

functions g(x) defined on (--,0] such that

(n)
(2.1) g(x), g'(x),...,g (x) are > 0, bounded,

and non-decreasing on (--,03
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Here the first n functions are assumed absolutely continuous, while g(n) (x)

may not exist for a countable number of values of x. A special element of

Nn is the function

0 if - < x <- ,

(2.2) g(x)= (1+X)n  if -1 < x < 0

An extremizing property of this special function is stated in the

following

Theorem 1 (Olovyanisnikov). If

(2.3) g(x) £ N

n

and

g(n (n)

(2.4) g(O) < g.(O) = 1, g n)(0) < g. (0) = ni

then

(v) (v)
(2.5) g9 (0) < g. (0) for V 1,2,...,n-1

To this we add now the following new unicity property of the extremizing

function g.(x):

Unicity theorem. If we have equality in (2.5) for some value of v,

then the equality holds for all v, and this happens only if

(2.6) g(x) g.(x) in [-, 0]
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The class Nn seems to be the right setting for these remarkable

results. However, to carry out our new approach we prefer to pass from x

to -x, writing f(x) - g(-x), and to state the following definitions.

Let M (n > 2) denote the class of functions f(x), 0 < x < -, suchn I

that

(2.7) (-1)vf (V)x) (V - 0,...,n) are > 0, bounded,

and non-increasing on [0,-)

This is the class of n-times monotone functions on [0,-). A special element L
of Mn is the function

n
(2.8) f'(x) (1-x) , (x < 0)

where t+ = max(t,0).

We may now restate all previous results as follows.

Theorem 2. If
M-MM---a-

(2.9) f(x) C M
n

and

(2.10) f(0) < f.(O) - 1, (-1)nf(n)(0) (-1)nf(n)( 0 ) - n

then

V ) () _
(2.11) (-1 vf (0) < (-1) V (0) for V - 1,2,...,n-1 '.

-3-



Moreover, if we have equality in (2.11) for some value of V, then equality

holds for all V, and this happens only if

(2.12) f(x) = f,(x) in [0,-)

3. A proof of Theorem 2. We use a formula of approximate

differentiation that expresses f (V)(0) as an appropriate linear combination

of the n data

(3.1) f(O), f(1 ), f1( 1 ),...,f(n-2)( 1 )

and is such that the formula should be exact for polynomials of degree n - i.

Such a formula can easily be obtained from Peano's theorem (see [2, §3.7]),

but in this case we may derive it directly as follows.

Taylor's formula gives the identity

n-i )kn 1

(3.2) f(O) = n (-1) f(k) (-1) n  n- (n)kI (1) + (n-l)1 x fn(x)dx
0 0

(v)
Applying this to f (x), rather than f(x), and for n - v in place of

n, we obtain

v) n-i k-v ()n-v 1 v- (n

(3.3) f (V)(0) = n (-1) f(k) (1) + (- f xn-V-1 f (n)(x)dx(k-v)! (n-v-i)!
v 0

In view of the data (3.1) we eliminate the unwanted term f(n-1)( 1 ) between

these relations: Multiplying (3.2) by -(n-1)(n-2).'.(n-v), and (3.3) by

v
(-i) , and adding them, we finally obtain the identity

-4-



(-1) V f (v)(0 (n-1)1 vII k f(k) ()
() (n-v-lfl (f(0) - 1~ (-1) f ()

n-2 AkC-l) kf ()(1) + f11 K(x)(-i) fl (x)dx

where

(n-1)] - i
(3.5) A. k (nvi1)! (k-v)t > 0 for k =v, v+l,...,n-2

and

(3.6) K(x) 1 x nv1(1-x ) 0 in (0,1)
(n-V-1)1

Notice that the second sum on the right side of (3.4) is absent if v= n-1.

All the desired conclusion follow almost immediately from the identity

(3.4) in view of the positivity of the Ak and K(x).

Ci) If f(x) =f*(X) = (1-x) + then (3.4) gives

ni (J) v (v)(0
(n-V)Z , (0

(3.7)

(n-1)1 v-i n-2
(+ I 0) + 10 + nt K(x)dx

(nv-)! k-0 k-v 0

On the other hand, if f(X) E M nand satisfies (2.10), then (3.4) and (3.7)

show that

(-1) f ()(0) <(n-1)1 0~ + )0 + 0 + n] f K(x)dx
(n-v-i)! k-0 k=V 0

(3.8)

(-i) Vf* (0)

-5-



establishing (2.11).

(ii) When does the equality sign hold in (3.8)? In view of (3.4) and

(2.10) this will be the case if and only if the following conditions are

simultaneously satisfied:

(3.9) f(0) - 1, f(1) - f'(1) -..- (n2)(1) = 0

and

(3.10) (-1)nf(n)(x) - n! almost everywhere in (0,1)

Now (3.10) shows that f(x) is a polynomial of degree n, while the

equations (3.9) sow that it must be of the form

f(x) - (1-x)n-l(1-ax)

Finally, again (3.10) shows that we must have a - 1. Thus the identity

(2.12) is established.

4. A second proof of Theorem 2. Here we use a fundamental result from

Williamson's paper [7] which we state as

Lemma 1. The class M - {f(x)} defined by (2.7), is identical with the

class of functions f(x) admitting a Stieltjes integral representation

(4.1) f(x) - f(1-xt)n da(t)
0

where

-6-
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(4.2) a(t) is non-decreasing and bounded on [0,-), ai(0) 0

and

(4.3) Un ftnd,(t) <

There is a close relationship between the discontinuities of the monotone

functions a(t) and f (n) (x) t t > 0 is a discontinuity of a~t) if and

only if x - I/1 is a discontinuity of f ( X). However,fn)x) i

continuous at x - 0, hence f n( 0) = f~n (0+).

The derivatives f~v)(x) are obtained by differentiation of (4.1) with

the result that

00

(4.4) (-1) Jf () c f (1-xt)n-t 'da(t), (V 0 ,.*.,n)n,V 0 +

where c nV=n(n-1) ... (n-V+1), 0n,o - 1, and in particular

(4.5) (I)vf (V) (0 ) M c f t Vdc(t), (V 0,..n
n ,V 0

We obtain the special function f* (x) C1-x) n from (4.1) if
+

(0 if 0< t< 1

and therefore

(4.7) C-i) Vf.(V (0) =c ( , v 0,...,n)n,v

-7-



It follows that in terms of a(t) the assumptions (2.10) are equivalent to

the inequalities

(4.8) U0 = f da(t) < 1 , u t nd(t) < 1
0 n 0o 0

to establish Theorem 2 we are to show that (4.8) imply the inequalities

(4.9) PV = f t da(t) < 1 for v = 1,2,...,n-1
0

This follows immediately from a known property of the moments p :

(4.10) The sequence p(V = 0,...,n) is logarithmically convex,

which means that

(4.11) the sequence log p (V 0,...,n) is convex.

For completeness we sketch a proof of the property (4.11): It amounts to

proving the inequalities

(4.12) (P) 2 < Pv_11'+I for v = 1,...,n-1

It is clearly sufficient to establish (4.12) for the case when a(t) is a

non-decreasing step-function with a finite number of discontinuities, in which

case

m
= [ c b , 0 < b < b <...< b all c > 0

j=1 m1

-8-



By Cauchy's inequalities we have

2i =,,m c(b )2  ( 1/ ! )2 /2 b!v+1)/2 )2

1 J 3 3
m m

b-- 1 m + vIc b7 T c€ c b ) I -1 +

establishing (4.12).

Let us finally establish the last sentence of Theorem 2: We assume that

we have the equality sign in (4.9) for some value of v, and we are to show

that a(t) = a (t).+

From the convexity property (4.11) the assumptions li < 1 and n < 1,
0= n=

and the equation pV = 1, for some v, evidently imply that

(4.13) v = f t'da(t) = 1 for V = 0,...,n ,
0

and we are to conclude that

r0 if 0 < t < 1
(4.14) a(t) = a,(t) = ( 1  if t > 1

Proof: We distinguish two cases depending on the parity of n. If n

is even we observe that (4.13) imply that

do n
f t-i) nd.() I (_,-)%) = 0

f0 0

The integrand being positive if t 1 1, this implies (4.14). If n is odd

we similarly conclude that

-9-



f t(1-t)n'lda(t) - 0
0

Again, the integrand being positive if t # 0 and t 1 1, we conclude that

(0,1) and (1,-) are intervals of constancy of a(t). Thus a(t) is a

step-function having non-negative jumps A0  and A1  at t = 0 and t = 1,

respectively. Now (4.13), for v - 0,1, show that A0 + A1 = 1, A1 = 1,

hence A0 = 0 and (4.14) is established.

II. Asymptotic Expansions

5. The differentiation of asymptotic estimates. Theorem 3 below was

suggested by a theorem of Hardy-Littlewood-Landau in a version due to Widder
a

[6, 223]. This theorem is as follows:

2Let f(x) C C (0,-) such that

a1
(A1) f(x) - (x +m)

x

(A2 ) 
f"(x) = O(x- 3

Then

a1,

(C) 
f(X) a

2
x

Widder proves it elegantly by applying one of Wiener's Tauberian

theorems.

This result becomes more elementary if we modify its statement by

replacing the assumption (A1 ) by the stronger assumption

-10-



a1  a I

(A1' f~x W + 2 ~

We shall show that (All) and (A2) imply that

(C') f,(x) _ + OCX 3)

vhich is stronger than (C).

This modified theorem also generalizes to higher derivatives and we may

state our

Theorem 3. Let f(x) E C n (0,-), (n > 2), and let us assume that

(5.1)f(x) = 1 + 2 a+ 0(~nl

x Xn

(5.2) f(n)(x) = in-1)

Then

a 1 2a 2 - -(n-I)a 1  -n-1
(C) f'(x) = - -+ x

2 3 n O~

2a1I (n-2)(n-)a 2  --
(C2) fh(x) = n +Ox

x x

(n-1)1 n-1 (n-1)la1  -0;n-1i
n-1) n

In words: The assumption (5.2) insures that we can differentiate

formally the asymptotic estimate (5.1) n-i times.

.1 _ _ _ _ _ ___ ___ 11 _



Proof: Writing as usual (a) n a(a+l)**(a+n-l), let us establish the

estimate

(Cf() (I k (1) ka Ik (n-k) ka n- (-n-1)(k) f x -) k+i n.. -) ~
x x

for k i.1...,n-1. To obtain it we need a formula for approximate

differentiation of the form

(5.3) F(0) A (F(V) +R(F) .i

0

Here the A V are appropriate numerical constants and R(F) is a linear

functional which is to vanish whenever F C ir1 *we do not need the values

of the AI but only wish to clarify their existence: If

n-1
(5.4) P(x)=~ PV)R (x), where P £

0

is Lagrange's interpolation formula, then also

P (k) (x) nil P(v )Z(k)(x)
V

0

and in particular

P ()(0) n-= () ()() whence AV = (k) (o)
0

By Peano's theorem (see [2, 13.7]) we may rewrite (5.3) as

(55 (k) n-i n-i (n)

(S5)F (0) - I A VF(V) + f K(t)F (t)dt
0 0

-12-
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Here K(x) is a kernel that can be determined by Peano's theorem, but whose

explicit form we do not need. Applying (5.5) to the function F(t) = f(x~t)

we obtain the identity

(k) n-i n-i (n)
(5.6) f '(x) = A Vf(x+V) + f K(t)f (x+t)dt, (x >0)

0 0

To simplify notations we use the symbols

n-i .a a
Ai(x;f) A ~ f(x+v) and v'(x) = L! +...+ -a

Applying (5.6) to our function fx= ()+Ox 1 ) and using (5.2), we

obta4in that

However, if we apply (5.6) to the function P'(x) we obtain

(k)(x) = A(x;,') + 0(x-n-), orA(xrP) _ P k(x) + 0(x--1

Substituting this into (5.7) we finally have

fkM (x) = p0kM (x) + O(X- n-1)

and this reduces to (Ck) if we incorporate with the remainder those terms of

0 () x)which are 0(i-ni ). This establishes (C ).

By way of a counter-example we consider the function

-13-



n --V x n+1
f(x) ax + (sin e )/x

1

Observe that it satisfies all assumptions of Theorem 3 with the exception of

(5.2). It is likewise evident by differentiations that none of the estimates

(Ck) hold.

6. The differentiation of asymptotic expansions. Let f(x) (x > 0)

admit the asymptotic expansion

a

(6.1) f(x) -- +...+ a, +... as K +x nx

This means that the estimates

a
a, + a+ + 0(,i-n-17 )

(6.2) f(x) +.o n
x nd
x

hold for all values of n = 0,1,... . It is even sufficient for (6.2) to hold

for arbitrarily large values of n.

Let us assume that f(x) e C (0,-) and find conditions which will insure

that the expansion (6.1) may be differentiated any number of times leading to

the expansion

(6.3) f(k)() - (-1 )k (l)k a1 k (n-k)ta k (k>1)
k+1x x

A necessary condition for this to hold is that we have

(6.4) f(n)(x) O(x n- l) for n = 1,2,...

-14-
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As an application of Theorem 3 we will show not only that the conditions (6.4)

are also sufficient, but that it is already sufficient that (6.4) should hold

for some arbitrarily large values of n. This we state as

Theorem 4. Let f(x) c C (0,-) admit the expansion (6.1). Then (6.1)

may be differentiated leading to (6.3) for all k, provided that the estimate

(6.5) f (nx) -n- l )  if n N,

holds for some infinite set N of integers.

Proof: We assume (6.1), and (6.5) for n C N. However, (6.1) implies

that (6.2) holds. Let k < n-1. By Theorem 3 (6.2) and (6.5) imply that we

can differentiate (6.2) leading to

(6.6) f(x) (-)k  a 1 (n-k) a(k k _ oo+___~ kan-k + (-n-i )

k+1 +...+ (-) n + 0
x x

Since n C N may be chosen arbitrarily large, this establishes the asymptotic

expansion (6.3), proving the theorem.

For other conditions insuring the differentiability of asymptotic

expansion see (3, theorem 3 on p. 542].

-15-
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ABSTRACT (continued)

g,(X) = 0 if -~< x < -1, g*(X) =(l+x)n if -1 < x < 0

If g(x) e N nis such that

g(0) < g*(0) = 1, g n 0 < g(n)(0) n

then

()g () <g () for v = 1,... ,n-1

Moreover, if we have equality in (1) for scme value of v, then we have there
equality for all v, and this happens only if g(x) = g,(x) in (-oo,0].

The second application gives sufficient conditions for the differentiability
of asymptotic expansion (Theorem 4).
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